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ABSTRACT

It is proved that every bounded closed and convex subset of an arbitrary con-
jugate separable Banach space is the closed convex hull of its extreme points.

By the classical Krein Milman theorem, every convex bounded and weak-star
closed subset of a conjugate Banach space is the weak-star closed convex hull
of its extreme points. In general, the assumption of weak-star closedness cannot
be replaced by norm closedness. For instance the unit ball of ¢, is a closed bounded
subset of m = I* and has no extreme points. However in the separable case we have:

THEOREM 1. Every bounded closed and convex subset of an arbitrary con-
jugate separable Banach space X is the closed convex hull of its extreme points.*

This theorem gives a useful criterion for a Banach space of being not isomorphi-
cally embeddable in any separable conjugate Banach space.

COROLLARY. The space L(0,1) is not isomorphic with any subspace of any
separable conjugate Banach space (cf. Gelfand [2], Pelczynski [6]).

This follows from the fact that the unit cell in L(0, 1) has no extreme points.

The assertion of Theorem 1 in the case X = I has been recently obtained by
Lindenstrauss [5]. The proof of Theorem 1 is a slight modification of Linden-
strauss’s proof. The special properties of / are replaced by the properties of X
exptessed in terms of inclinations d, (used by Kadec for constructing a homeo-
morphism between separable conjugate spaces).

According to [5, Lemma 1] the Theorem 1 is reduced to the following

ProposITION. If K is a bounded closed convex subset of a separable conjugate
Banach space, X then the set ext K of all extreme points in K is non empty.

Proof. Assume that | - || is an admissible norm of X such that for the sequences
in the unit sphere {xeX; ||x| =1} the weak-star convergence coincides with
the norm convergence (such a norm exists, see Kadec [3] and Klee [4]). Let
X = Z* and let (z,) be a linearly independent and linearly dense sequence in Z.
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* Since every complex-conjugate space, regarded as a real space is a closed subspace of the
suitable read conjugate space, it is enough to restrict the exttention to the real case.
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Let L, = {xe X:x(z;) = 0 for i £ n}. Then (L,) is a decreasing sequence of linear
subspaces of X, and ()7~ L, = {0}. For any x in X let

d(x)=inf |x—u| for n=1,2,--
uel.

We shall also consider the space ! of absolutely summable real-valued sequences
with the usual norm. For any ¢ = (&) € [ let us set

dn(é)‘: 2 lfkl fOI‘ n=1’2’.’.
k=1
Let V be either X or /; Denote

B
) (¢)

the unit cell in space V,

i

{xeB": d(x)= | x| —¢}, fore>0

Lemma 1. (Kadec [3], Klee [4]). There is a homeomorphism h: X—=1

such that d(x)=d(hx) for n=1,2,..-. This homeomorphism has obviously
the property: h(B*) = B' and h(TX()) = T} (¢).

Since the set T.(e) is contained in the e-neighbourhood of the compact set
B'n {¢el:& =0 for k > n}, we get

LeMMA 2. The set T'(e) admits a finite 2¢-net.

LemMA 3. If(p,) is a sequence of positive integers (F,) is a decreasing sequence
of closed sets with F,c Ty (1/k), k =1,2,--- and V is either | or X, then the set
F =( )1 Fy is non empty and compact.

Proof. 1° Let V=1 Let x,€F,. By Lemma 2, (x,) is totally bounded, hence
it has a cluster point x; = ﬂf,llF,,, ie. F #¢. From Lemma 2 it also follows
that F is totally bounded, and since F is closed, it must be compact.

2° In the case V = X the assertion follows from Lemma 1 and from 1°.

LemMa 4. If K is a closed convex subset of X with sup, x| x| =M <1,
then for every & > 0 there exists a closed face F, in K and a positive integer n
such that F, < TX(e).

Proof. Take an y in K such that || y || = M — /4. Let n be such that
d(y)Z M — ¢/2. Let f be a linear functional such that f(x) < d,(x) for all xe X
and f(y) =d,(y) (f is a supporting functional of the “‘cylinder’” {x:d,(x) < 1}
at the point y/d,(y). By the Bishop Phelps theorem [1], there exists a g X*
with |g—f| <¢/4M such that the face F,={xeK:g(x) = sup,.x g(u)}
is nonempty. For x € F, we have
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d(x)2fx)zex) - |f-g|lx]|zsm) - |f-g]|x]|
zfO - |-l (x| +|rpz=m - %—%zﬂx\l —e.

Hence F; < TX(). Q.E.D.

Proof of the proposition. Without loss of generality we may assume that
K = B*. By Lemma 4, there is a sequence (F,) of closed faces of K and a sequence
of integers (p,) such that F,,, ; isafaceof F,and F, c T, Iff‘ (1/n). Hence, by Lemma 3
F= ﬂ,‘,”:l F, is a nonempty compact face of K. By the Krein Milman theorem,
ext F # ¥ and hence ext K #F. This concludes the proof.

PrOBLEM. Let X be a (separable) Banach space with the property that every
bounded closed convex subset of X is the closed convex hull of its extreme points.
Must X be isomorphic with a closed linear subspace of a (separable) conjugate
space?
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